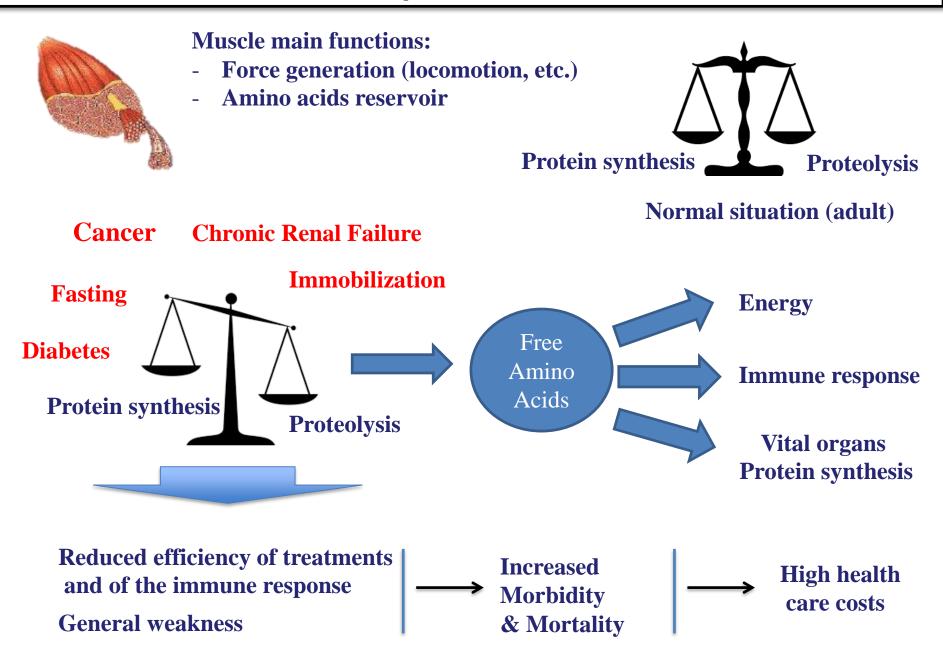
Muscle Wasting in Patients with Early-Stage Lung Cancer: Identification of an Atrophying Programme

D. Taillandier



UMR 1019 INRA/Université Clermont-Auvergne Clermont-Ferrand - France

CRNH CENTRE DE RECHERCHE EN NUTRITION HUMAINE AUVERGNE

Muscle loss: from an adaptive to a deleterious mechanism

Proteolysis is the main determinant

Proteolytic Systems involved

✓ Calpains (cytosolic, Ca²⁺-dependent)

✓ Autophagy (cathepsins, lysosomes, endosomes)

✓ Caspases (cytosolic)

Proteasome (cytosolic, self-compartmentalized)
UPS: Ubiquitin Proteasome System

Is there an atrophying program including systematically (but not limited to) proteolytic systems?

Why skeletal muscles are so important for cancer patients?

Muscle loss = signal event in cancer cachexia Reduced quality of life Increased chemotherapy toxicity

Key points Kenneth Fearon, Jann Arends and Vickie Baracos Nat. Rev. Clin. Oncol. 2013

- Cancer cachexia remains an important unmet medical need that affects patients' quality of life and treatment outcomes
- Cachexia can be missed in an ever-increasingly obese population
- Therapy should start early and can run in parallel with antineoplastic therapy
- There is an urgent need to establish best supportive multimodal care for cachexia: beyond good clinical or oncological care, the treatable defects in dietary intake, physical activity and systemic inflammation should be addressed
- Patients with cachexia should be actively considered for entry into clinical trials

Major goal: finding robust biomarkers allowing an early detection of muscle loss

How finding biomarkers that may help fighting against cancer cachexia?

Specific of muscle atrophy

Early detection but sustained modified expression

Easy to handle in hospitals and poorly invasive

2 pathologies with different etiology

Both early and late stage disease

Proof of concept: muscle biomarkers Final goal: blood markers

Final goal: blood markers

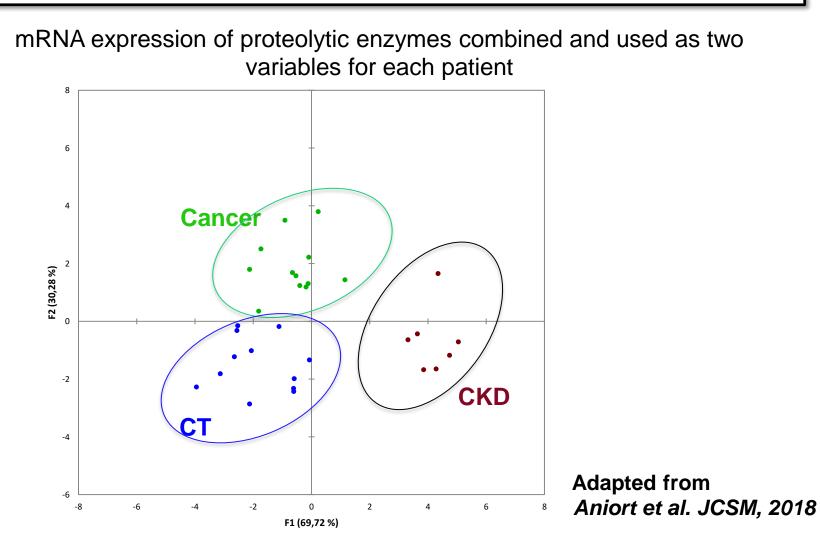
Finding muscle wasting markers following lung cancer in humans: the PROMETHE cohort

- Control patients (CT)
- Cancer patients (pulmonary neoplasia, C)
- Hemodialysis patients (CKD)

Muscle biopsies following surgery Blood samples

Transcriptomic and Proteomic Analysis

	Control patients (n=7)	Lung cancer patients (n=7)	Hemodialysis patients (n=7)	р
Age (years)	71 [60-79]	69 [62-75]	69. [66-77]	> 0.9
M:F	6 :1	6:1	6 :1	> 0.9
Weight (kg)	76 [73-78] ^a	66 [62-72] ^{ab}	64 [59-66] ^b	0.05
Height (cm)	170 [174-182] ^a	173 [169-176] ^{ab}	165 [160-170] ^b	0.03
BMI	24.8 [23.5-25.1]	21.3 [20.2-24.1]	23.4 [22.4-24.4]	0.15
CRP (mg/L)	3.0 [3.0-7.4] ^a	9.7 [4.1-37.3] ^b	12.8 [4.4-22.5] ^b	0.03
Creatinine (µmol/L)	66 [59-81]ª	82 [64-90] ^a	535 [494-752] ^b	< 0.001
GFR mL/min/1.73m ²	88 [85-95]	84. [74-94]	NA	> 0.9


Implication of proteolytic systems on muscle wasting in CKD and cancer patients

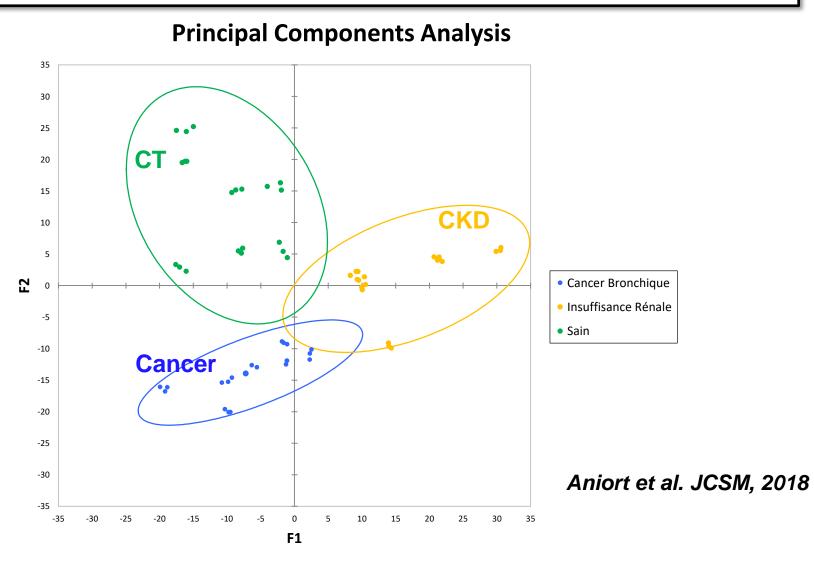
		Cancer (n=14)	CKD (n=7)			Cancer (n=14)	CKD (n=7)
	MAFbx	7	7		C2, C5, C8	\rightarrow	\rightarrow
	MuRF1	7	7		S2	\rightarrow	7
	Mdm2	7	7	J	S4	\rightarrow	\rightarrow
	Nedd4	\rightarrow			S5a	\rightarrow	
	E4B	\rightarrow	Л		S11	\rightarrow	7
	UBE2B	\rightarrow	\rightarrow		S12	\rightarrow	\rightarrow
	UBE2D2	\rightarrow	\rightarrow		Casp3	\rightarrow	Л
					Casp9	\rightarrow	

So far, only a limited number E3 ligases are good biomarkers of muscle atrophy

Adapted from Aniort et al. JCSM, 2018

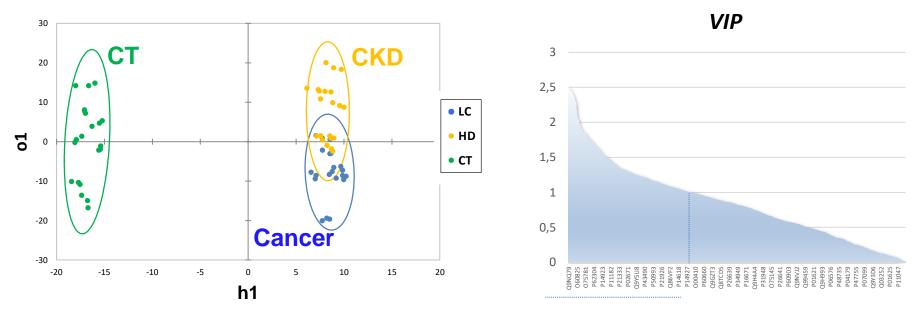
Transcription analysis of muscles from CKD and cancer patients

Discriminant analysis of mRNA levels from 17 actors of proteolytic systems (UPS and caspases) efficiently separates the 3 populations


Proteomic analysis of muscles from CKD and cancer patients

- 21 patients (n = 7 per group)
- **Cytoplasmic**, myofibrillar and UPS substrates
- Shot gun analysis using nanoLC-MS/MS (Ultimate3000 system coupled to an LTQ-Orbitrap Velos mass spectrometer)
- MaxQuant (Max Planck Institute) and Proline (EDyP-Grenoble, IPBS-Toulouse, IPHC/LSMBO-Strasbourg) analysis

- 1779 proteins identified
- 919 differentially expressed proteins
- 257 proteins either increased or decreased in both Cancer and CKD patients

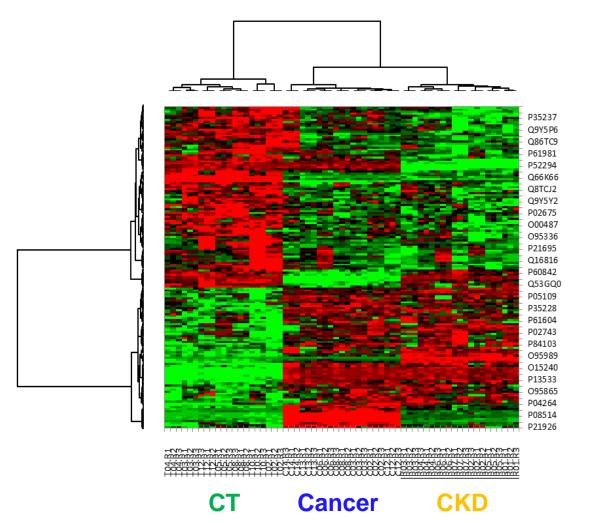

Principal Component Analysis (PCA)

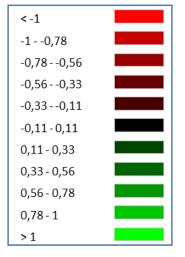
Proteomic analysis of muscles from CKD and cancer patients

Discriminant analysis of differentially expressed proteins efficiently separates the 3 populations

Discriminant Analysis on proteins that best characterized atrophying muscles independently of the pathology

OPLS-DA

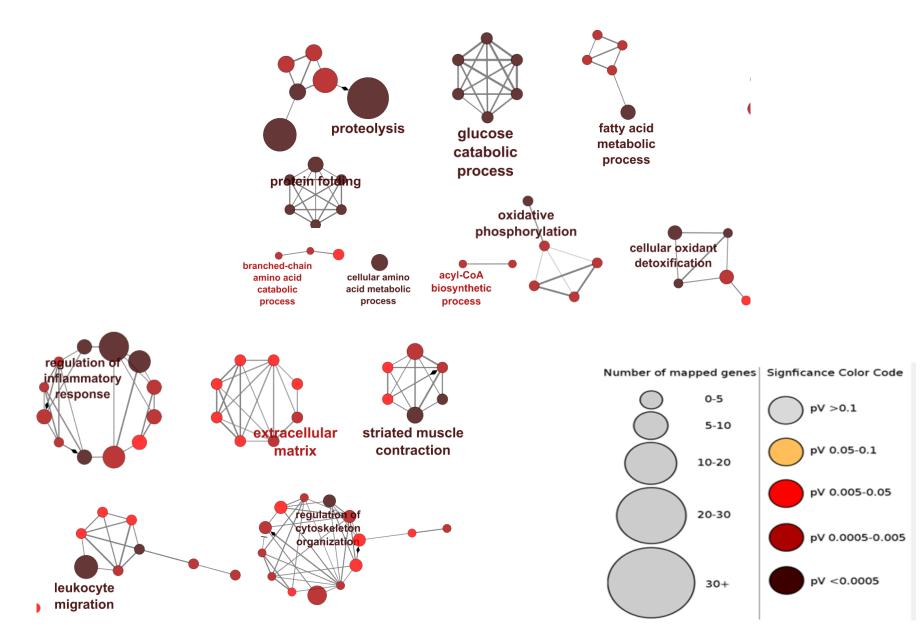

321 proteins VIP > 1 crossed with PCA analysis (**257** proteins)


→ 238 significant in both pathologies

Discriminant analysis of differentially expressed proteins efficiently separates the 3 populations

Aniort et al. JCSM, 20181

Unsupervised hierarchical cluster analysis



Aniort et al. JCSM, 2018

Most selected proteins (238) are good predictors of muscle atrophy independently of the disease

Biological Processes

Cytoscape software Clue GO application

Conclusions and ongoing experiments

Specific markers of muscle atrophy were found independently of the pathology

- MuRF1 and MAFbx are the best (but not the only) mRNA biomarkers as in animal models
- Both proteolysis-linked mRNAs and specific proteomes discriminate healthy and pathology-developing patients
- Down regulation of several proteins involved in cell growth/proliferation and organization
- Finding biomarkers in more accessible compartments (e.g. blood) that are directly correlated to muscle atrophy markers
 - RNAseq analysis: miRNA and mRNA
 - in progress: > 1500 potential markers

> 20 blood markers directly witnessing muscle atrophy

Using more patients/other cohorts for strengthening/validating the conclusions

Acknowledgements

Lab members and students

Anne-Elisabeth Heng (Nephrology Department)

Daniel Béchet Agnès Claustre Lydie Combaret Cécile Coudy Christiane Deval Cécile Polge

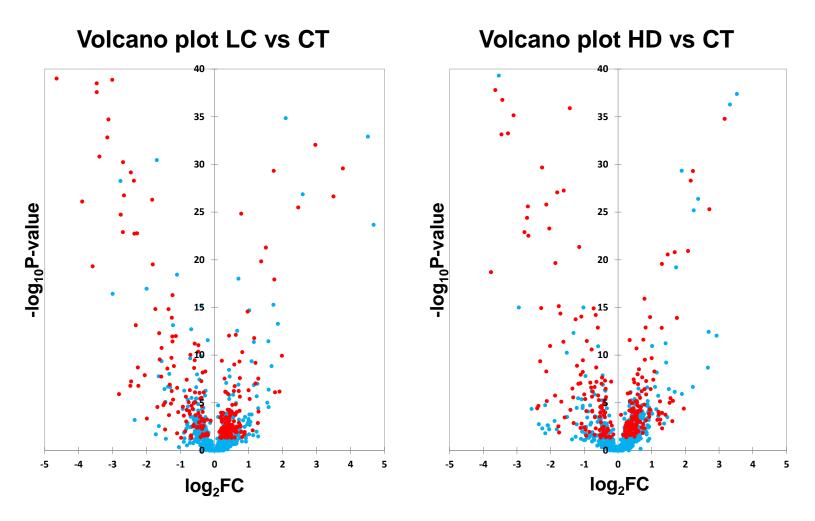
Daniel Taillandier

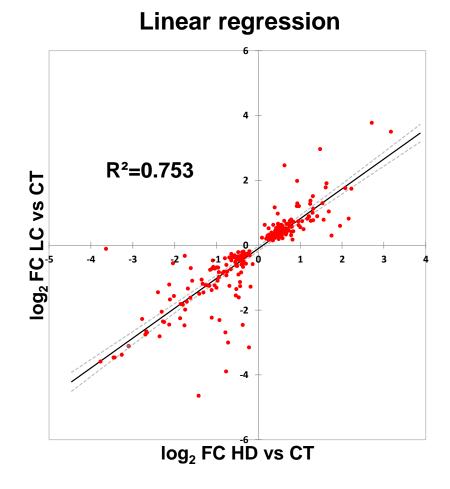
(Nephrology Department) Julien Aniort C. Philipponnet A. Poyet

Collaborators

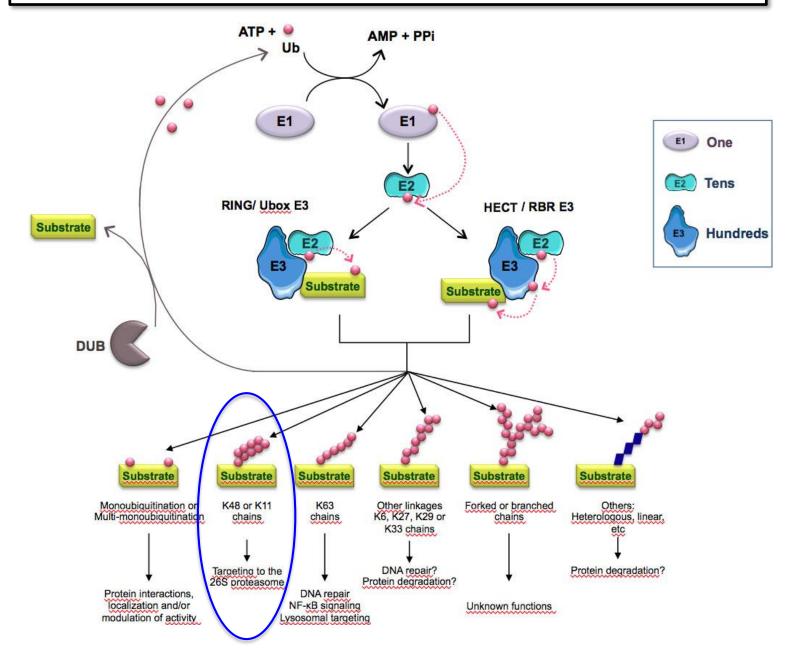
- S. Boisgard (Orthopedic Surgery Department)
- E. Rosset (Vascular Surgery Department)
- M. Filaire (Thoracic Surgery Department)

Odile Schiltz Alexandre Stella

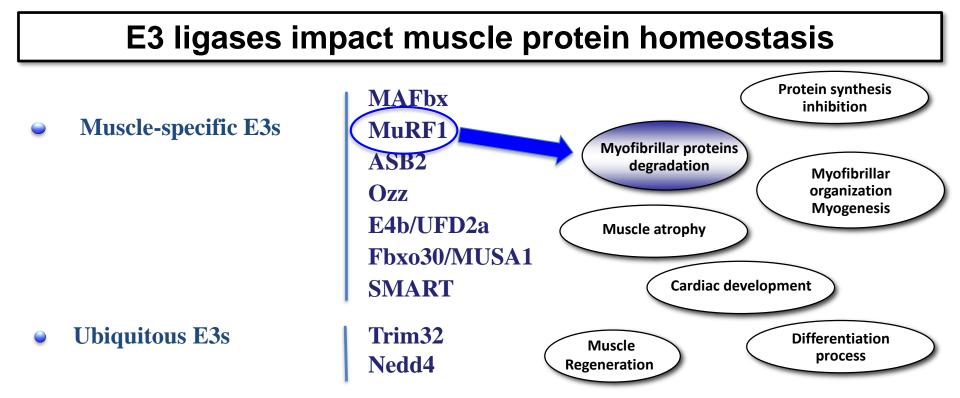




• Proteins significantly increased or decreased both in LC and HD patients


Differentially-expressed proteins exhibit highly similar variation levels independently of the disease

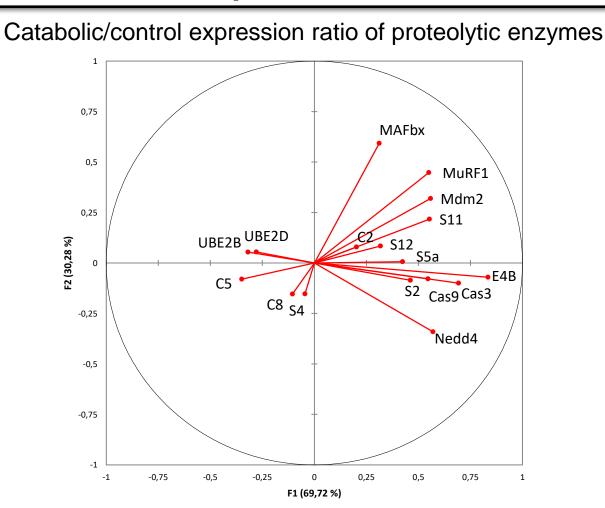
Fold change in protein expression in LC vs. HD patients relative to CT patients


CT, healthy; HD, haemodialysis; LC, lung cancer

Ubiquitin Proteasome System (UPS)

Ubiquitination in various human diseases

E3 ligase	Targeted protein or pathway	Ubiquitin chain type	;	Disease	
FANCL	FANCD2, FANC1	monoUb		Fanconi anemia	
DDB2	Chromatin	monoUb		Xeroderma pigmentosum	
Cbl family	RTKs	monoUb		Cancer	
Nedd4	PTEN, α-synuclein	monoUb, Lys63, poly	Ub	Cowden syndrome, Parkinson	
Rabex-5	Ras	monoUb		Cancer	
HDM2	p53	Lys48		Cancer	
APC/C10	Cyclin-CDK	Lys48		Genomic instability	
SOCS1/3	IRS2	Lys48		Metabolic syndrome	
MG53	IR, IRS1	Lys48		Metabolic syndrome	
pVHL15	HIF	Lys48		Von Hippel Lindau	
IAPs	NIK	Lys48		Multiple myeloma	
Rnf168	Histones	Lys63, polyUb		Cancer, RIDDLE syndrome	
TRAF6	TRAF6, NEMO,	Lys63, polyUb		Inflammatory disease,	
	huntingtin			Huntington's disease	
Itch, IAPs	RIP2	Lys63, polyUb		Crohn's disease	
Parkin	Mitochondrial	Lys63, polyUb		Parkinson's disease	
outer membrane proteins					
CHIP, Parkin	Huntingtin,	Lys63, polyUb		Huntington's disease,	
	β-amyloid, tau			Alzheimer's disease	
BRCA1	BRCA1	Atypical polyUb		Breast and ovarian cancer	
LUBAC	NEMO	Linear polyUb	Auto	oinflammation, muscular	
			amylopectinosis	s, bacterial infections	


The FASEB Journal article fj.11-180968. Published online August 2, 2011.

The FASEB Journal • Research Communication

Muscle actin is polyubiquitinylated *in vitro* and *in vivo* and targeted for breakdown by the E3 ligase MuRF1

Cécile Polge,^{*,†,1} Anne-Elisabeth Heng,^{*,†,‡,1} Marianne Jarzaguet,^{*,†} Sophie Ventadour,^{†,*} Agnès Claustre,^{†,*} Lydie Combaret,^{†,*} Daniel Béchet,^{†,*} Mariette Matondo,^{§,||} Sandrine Uttenweiler-Joseph,^{§,||} Bernard Monsarrat,^{§,||} Didier Attaix,^{*,†} and Daniel Taillandier^{*,†,2}

Transcription analysis of muscles from CKD and cancer patients

Discriminant analysis of mRNA levels confirm that some E3 ligases (MuRF1, MAFbx and Mdm2) are the best predictors for muscle atrophy in CKD and cancer patients